Attributes-Guided and Pure-Visual Attention Alignment for ## **Few-Shot Recognition** Siteng Huang, Min Zhang, Yachen Kang, Donglin Wang* {huangsiteng, wangdonglin}@westlake.edu.cn ## Few-shot recognition: recognize novel categories with very few labeled examples in each class. Poor generalization Packground ? Metric-based meta-learning: learn a generalizable embedding model to transform all samples into a common metric space, where simple nearestneighbor classifiers can be executed. black black with attention alignment In this paper, we propose a novel attributes-guided attention module (AGAM) to utilize human-annotated of attributes as auxiliary semantics and learn more discriminative features. support original image query original image without attention alignment - 1. We design two parallel branches attributes-guided branch for samples with attributes, and self-guided branch for samples without attributes. Discriminability of features is improved with attributes-guided or self-guided channel and spatial attention. - 2. Similar feature selection processes are proposed for both support and query samples, so features extracted by both visual contents and attributes share the same space with pure-visual features. - 3. We propose an attention alignment mechanism between two branches, promoting the self-guided branch to focus on more important features even without attributes. ## **Experimental Results** Extensive experiments show that our light-weight module can significantly improve metric-based approaches to achieve SOTA. More details can be found in - Project Page: https://kyonhuang.top/publication/attributes-guided-attention-module - Code: https://github.com/bighuang624/AGAM | | CUB | | SUN | | |---|------------------|------------------|------------------|------------------| | Method | 5-way 1-shot | 5-way 5-shot | 5-way 1-shot | 5-way 5-shot | | MatchingNet (Vinyals et al. 2016), paper | 61.16 ± 0.89 | 72.86 ± 0.70 | - | - | | MatchingNet (Vinyals et al. 2016), our implementation | 62.82 ± 0.36 | 73.22 ± 0.23 | 55.72 ± 0.40 | 76.59 ± 0.21 | | MatchingNet (Vinyals et al. 2016) with AGAM | 71.58 ± 0.30 | 75.46 ± 0.28 | 64.95 ± 0.35 | 79.06 ± 0.19 | | | +8.76 | +2.24 | +9.23 | +2.47 | | ProtoNet (Snell, Swersky, and Zemel 2017), paper | 51.31 ± 0.91 | 70.77 ± 0.69 | - | - | | ProtoNet (Snell, Swersky, and Zemel 2017), our implementation | 53.01 ± 0.34 | 71.91 ± 0.22 | 57.76 ± 0.29 | 79.27 ± 0.19 | | ProtoNet (Snell, Swersky, and Zemel 2017) with AGAM | 75.87 ± 0.29 | 81.66 ± 0.25 | 65.15 ± 0.31 | 80.08 ± 0.21 | | • | +22.86 | +9.75 | +7.39 | +0.81 | | RelationNet (Sung et al. 2018), paper | 62.45 ± 0.98 | 76.11 ± 0.69 | - | - | | RelationNet (Sung et al. 2018), our implementation | 58.62 ± 0.37 | 78.98 ± 0.24 | 49.58 ± 0.35 | 76.21 ± 0.19 | | RelationNet (Sung et al. 2018) with AGAM | 66.98 ± 0.31 | 80.33 ± 0.40 | 59.05 ± 0.32 | 77.52 ± 0.18 | | | +8.36 | +1.35 | +9.47 | +1.31 | Table 1: Average accuracy (%) comparison with 95% confidence intervals before and after incorporating AGAM into existing methods using a Conv-4 backbone. Best results are displayed in **boldface**, and improvements are displayed in *italics*. | | | Test Accuracy | | | |---|--------------|------------------|------------------|--| | Method | Backbone | 5-way 1-shot | 5-way 5-sho | | | MatchingNet (Vinyals et al. 2016) | Conv-4 | 61.16 ± 0.89 | 72.86 ± 0.70 | | | ProtoNet (Snell, Swersky, and Zemel 2017) | Conv-4 | 51.31 ± 0.91 | 70.77 ± 0.69 | | | RelationNet (Sung et al. 2018) | Conv-4 | 62.45 ± 0.98 | 76.11 ± 0.69 | | | MACO (Hilliard et al. 2018) | Conv-4 | 60.76 | 74.96 | | | MAML (Finn, Abbeel, and Levine 2017) | Conv-4 | 55.92 ± 0.95 | 72.09 ± 0.7 | | | Baseline (Chen et al. 2019a) | Conv-4 | 47.12 ± 0.74 | 64.16 ± 0.7 | | | Baseline++ (Chen et al. 2019a) | Conv-4 | 60.53 ± 0.83 | 79.34 ± 0.6 | | | Comp. (Tokmakov, Wang, and Hebert 2019) * | ResNet-10 | 53.6 | 74.6 | | | AM3 (Xing et al. 2019) ** | Conv-4 | 73.78 ± 0.28 | 81.39 ± 0.2 | | | AGAM (OURS) * | Conv-4 | 75.87 ± 0.29 | 81.66 ± 0.2 | | | MatchingNet (Vinyals et al. 2016) † | ResNet-12 | 60.96 ± 0.35 | 77.31 ± 0.2 | | | ProtoNet (Snell, Swersky, and Zemel 2017) | ResNet-12 | 68.8 | 76.4 | | | RelationNet (Sung et al. 2018) † | ResNet-12 | 60.21 ± 0.35 | 80.18 ± 0.2 | | | TADAM (Oreshkin, López, and Lacoste 2018) | ResNet-12 | 69.2 | 78.6 | | | FEAT (Ye et al. 2020) | ResNet-12 | 68.87 ± 0.22 | 82.90 ± 0.1 | | | MAML (Finn, Abbeel, and Levine 2017) | ResNet-18 | 69.96 ± 1.01 | 82.70 ± 0.6 | | | Baseline (Chen et al. 2019a) | ResNet-18 | 65.51 ± 0.87 | 82.85 ± 0.5 | | | Baseline++ (Chen et al. 2019a) | ResNet-18 | 67.02 ± 0.90 | 83.58 ± 0.5 | | | Delta-encoder (Bengio et al. 2018) | ResNet-18 | 69.8 | 82.6 | | | Dist. ensemble (Dvornik, Mairal, and Schmid 2019) | ResNet-18 | 68.7 | 83.5 | | | SimpleShot (Wang et al. 2019) | ResNet-18 | 70.28 | 86.37 | | | AM3 (Xing et al. 2019) * | ResNet-12 | 73.6 | 79.9 | | | Multiple-Semantics (Schwartz et al. 2019) * ° • | DenseNet-121 | 76.1 | 82.9 | | | | ResNet-18 | 69.61 ± 0.46 | 84.10 ± 0.3 | | | Dual TriNet (Chen et al. 2019b) * ° | KCSINCI-10 | 07.01 ± 0.40 | 04.10 ± 0.5 | | Table 2: Average accuracy (%) comparison to state-of-the-arts with 95% confidence intervals on the CUB dataset. † denotes that it is our implementation. * denotes that it uses auxiliary attributes. ° denotes that it uses auxiliary label embeddings. • denotes that it uses auxiliary descriptions of the categories. Best results are displayed in **boldface**. | | | Test Accuracy | | | |---|-----------|------------------|------------------|--| | Method | Backbone | 5-way 1-shot | 5-way 5-shot | | | MatchingNet (Vinyals et al. 2016) † | Conv-4 | 55.72 ± 0.40 | 76.59 ± 0.21 | | | ProtoNet (Snell, Swersky, and Zemel 2017) † | Conv-4 | 57.76 ± 0.29 | 79.27 ± 0.19 | | | RelationNet (Sung et al. 2018) † | Conv-4 | 49.58 ± 0.35 | 76.21 ± 0.19 | | | Comp. (Tokmakov, Wang, and Hebert 2019) * | ResNet-10 | 45.9 | 67.1 | | | AM3 (Xing et al. 2019) † * | Conv-4 | 62.79 ± 0.32 | 79.69 ± 0.23 | | | AGAM (OURS) * | Conv-4 | 65.15 ± 0.31 | 80.08 ± 0.21 | | Table 3: Average accuracy (%) comparison to state-of-the-arts with 95% confidence intervals on the SUN dataset. † denotes that it is our implementation. * denotes that it uses auxiliary attributes. Best results are displayed in **boldface**.