

Attributes-Guided and Pure-Visual Attention Alignment for

Few-Shot Recognition

Siteng Huang, Min Zhang, Yachen Kang, Donglin Wang*

{huangsiteng, wangdonglin}@westlake.edu.cn

Few-shot recognition: recognize novel categories with very few labeled examples in each class. Poor generalization Packground ?

Metric-based meta-learning: learn a generalizable embedding model to transform all samples into a common metric space, where simple nearestneighbor classifiers can be executed.

black black

with attention

alignment

In this paper, we propose a novel attributes-guided attention module (AGAM) to utilize human-annotated of attributes as auxiliary semantics and learn more discriminative

features.

support original image

query original image

without attention

alignment

- 1. We design two parallel branches attributes-guided branch for samples with attributes, and self-guided branch for samples without attributes. Discriminability of features is improved with attributes-guided or self-guided channel and spatial attention.
- 2. Similar feature selection processes are proposed for both support and query samples, so features extracted by both visual contents and attributes share the same space with pure-visual features.
- 3. We propose an attention alignment mechanism between two branches, promoting the self-guided branch to focus on more important features even without attributes.

Experimental Results

Extensive experiments show that our light-weight module can significantly improve metric-based approaches to achieve SOTA. More details can be found in

- Project Page: https://kyonhuang.top/publication/attributes-guided-attention-module
- Code: https://github.com/bighuang624/AGAM

	CUB		SUN	
Method	5-way 1-shot	5-way 5-shot	5-way 1-shot	5-way 5-shot
MatchingNet (Vinyals et al. 2016), paper	61.16 ± 0.89	72.86 ± 0.70	-	-
MatchingNet (Vinyals et al. 2016), our implementation	62.82 ± 0.36	73.22 ± 0.23	55.72 ± 0.40	76.59 ± 0.21
MatchingNet (Vinyals et al. 2016) with AGAM	71.58 ± 0.30	75.46 ± 0.28	64.95 ± 0.35	79.06 ± 0.19
	+8.76	+2.24	+9.23	+2.47
ProtoNet (Snell, Swersky, and Zemel 2017), paper	51.31 ± 0.91	70.77 ± 0.69	-	-
ProtoNet (Snell, Swersky, and Zemel 2017), our implementation	53.01 ± 0.34	71.91 ± 0.22	57.76 ± 0.29	79.27 ± 0.19
ProtoNet (Snell, Swersky, and Zemel 2017) with AGAM	75.87 ± 0.29	81.66 ± 0.25	65.15 ± 0.31	80.08 ± 0.21
•	+22.86	+9.75	+7.39	+0.81
RelationNet (Sung et al. 2018), paper	62.45 ± 0.98	76.11 ± 0.69	-	-
RelationNet (Sung et al. 2018), our implementation	58.62 ± 0.37	78.98 ± 0.24	49.58 ± 0.35	76.21 ± 0.19
RelationNet (Sung et al. 2018) with AGAM	66.98 ± 0.31	80.33 ± 0.40	59.05 ± 0.32	77.52 ± 0.18
	+8.36	+1.35	+9.47	+1.31

Table 1: Average accuracy (%) comparison with 95% confidence intervals before and after incorporating AGAM into existing methods using a Conv-4 backbone. Best results are displayed in **boldface**, and improvements are displayed in *italics*.

		Test Accuracy		
Method	Backbone	5-way 1-shot	5-way 5-sho	
MatchingNet (Vinyals et al. 2016)	Conv-4	61.16 ± 0.89	72.86 ± 0.70	
ProtoNet (Snell, Swersky, and Zemel 2017)	Conv-4	51.31 ± 0.91	70.77 ± 0.69	
RelationNet (Sung et al. 2018)	Conv-4	62.45 ± 0.98	76.11 ± 0.69	
MACO (Hilliard et al. 2018)	Conv-4	60.76	74.96	
MAML (Finn, Abbeel, and Levine 2017)	Conv-4	55.92 ± 0.95	72.09 ± 0.7	
Baseline (Chen et al. 2019a)	Conv-4	47.12 ± 0.74	64.16 ± 0.7	
Baseline++ (Chen et al. 2019a)	Conv-4	60.53 ± 0.83	79.34 ± 0.6	
Comp. (Tokmakov, Wang, and Hebert 2019) *	ResNet-10	53.6	74.6	
AM3 (Xing et al. 2019) **	Conv-4	73.78 ± 0.28	81.39 ± 0.2	
AGAM (OURS) *	Conv-4	75.87 ± 0.29	81.66 ± 0.2	
MatchingNet (Vinyals et al. 2016) †	ResNet-12	60.96 ± 0.35	77.31 ± 0.2	
ProtoNet (Snell, Swersky, and Zemel 2017)	ResNet-12	68.8	76.4	
RelationNet (Sung et al. 2018) †	ResNet-12	60.21 ± 0.35	80.18 ± 0.2	
TADAM (Oreshkin, López, and Lacoste 2018)	ResNet-12	69.2	78.6	
FEAT (Ye et al. 2020)	ResNet-12	68.87 ± 0.22	82.90 ± 0.1	
MAML (Finn, Abbeel, and Levine 2017)	ResNet-18	69.96 ± 1.01	82.70 ± 0.6	
Baseline (Chen et al. 2019a)	ResNet-18	65.51 ± 0.87	82.85 ± 0.5	
Baseline++ (Chen et al. 2019a)	ResNet-18	67.02 ± 0.90	83.58 ± 0.5	
Delta-encoder (Bengio et al. 2018)	ResNet-18	69.8	82.6	
Dist. ensemble (Dvornik, Mairal, and Schmid 2019)	ResNet-18	68.7	83.5	
SimpleShot (Wang et al. 2019)	ResNet-18	70.28	86.37	
AM3 (Xing et al. 2019) *	ResNet-12	73.6	79.9	
Multiple-Semantics (Schwartz et al. 2019) * ° •	DenseNet-121	76.1	82.9	
	ResNet-18	69.61 ± 0.46	84.10 ± 0.3	
Dual TriNet (Chen et al. 2019b) * °	KCSINCI-10	07.01 ± 0.40	04.10 ± 0.5	

Table 2: Average accuracy (%) comparison to state-of-the-arts with 95% confidence intervals on the CUB dataset. † denotes that it is our implementation. * denotes that it uses auxiliary attributes. ° denotes that it uses auxiliary label embeddings. • denotes that it uses auxiliary descriptions of the categories. Best results are displayed in **boldface**.

		Test Accuracy		
Method	Backbone	5-way 1-shot	5-way 5-shot	
MatchingNet (Vinyals et al. 2016) †	Conv-4	55.72 ± 0.40	76.59 ± 0.21	
ProtoNet (Snell, Swersky, and Zemel 2017) †	Conv-4	57.76 ± 0.29	79.27 ± 0.19	
RelationNet (Sung et al. 2018) †	Conv-4	49.58 ± 0.35	76.21 ± 0.19	
Comp. (Tokmakov, Wang, and Hebert 2019) *	ResNet-10	45.9	67.1	
AM3 (Xing et al. 2019) † *	Conv-4	62.79 ± 0.32	79.69 ± 0.23	
AGAM (OURS) *	Conv-4	65.15 ± 0.31	80.08 ± 0.21	

Table 3: Average accuracy (%) comparison to state-of-the-arts with 95% confidence intervals on the SUN dataset. † denotes that it is our implementation. * denotes that it uses auxiliary attributes. Best results are displayed in **boldface**.